calculating$551712$ - translation to ελληνικό
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

calculating$551712$ - translation to ελληνικό

MECHANICAL MACHINE FOR ARITHMETIC OPERATIONS FOR ABSOLUTE CALCULATORS
Calculating machine; Mechanical calculating device; Calculating Machines; Calculating Machine; Calculating machines; Mechanical calculating machine; Mechanical Calculator; Rotary calculator; Rotary desk calculator
  • From the calculating machine of Pascal to the computer]], p. 43 (1990)</ref> [[Musée des Arts et Métiers]]
  • 19th and early 20th centuries calculating machines, [[Musée des Arts et Métiers]]
  • Minimal but working demonstration part of the ''mill'' from the [[Analytical engine]], finished by Babbage's son around 1906
  • <div align="center">Arithmometers built from 1820 to 1851 had a one-digit multiplier/divider cursor (ivory top) is on the left. Only prototypes of these machines were built.</div>
  • In the position shown, the counting wheel meshes with three of the nine teeth of the Leibniz wheel.
  • Detail of an early calculating machine invented by Didier Roth around 1840.  This machine is a direct descendant of [[Pascal's calculator]].
  • Friden Calculator
  • Grant's Barrel, 1877
  • Mercedes Euklidische, Mod. 29 at the [[Museum Europäischer Kulturen]]
  • Various desktop mechanical calculators used in the office from 1851 onwards. Each one has a different user interface. This picture shows clockwise from top left: An [[Arithmometer]], a [[Comptometer]], a Dalton adding machine, a Sundstrand, and an [[Odhner Arithmometer]]
  • Mechanism of mechanical calculator
  • An [[Addiator]] can be used for addition and subtraction.
  • Odhner's arithmometer
  • A mechanical calculator from Anton Braun, dated 1727

calculating      
υπολογιστής
local time         
  • The control panel of the Time Zone Clock in front of [[Coventry Transport Museum]]
  • DST never observed}}
  • Plaque commemorating the Railway General Time Convention of 1883 in North America
  • 1913 time zone map of the United States, showing boundaries very different from today
  • }
  • World map of time zones in 1928
  • Time zones of the world
WIKIMEDIA DISAMBIGUATION PAGE
Time Zone; TimeZone; Calculating local time; Time zones; Time Zones; Time-zone; Timezone; Time difference; Local Time; Standard time zone; Skewing of time zones; Day of two noons; The Day of Two Noons; Zone time
τοπική ώρα
pocket calculator         
ELECTRONIC DEVICE USED FOR CALCULATIONS
Pocket calculator; Calculators; Pocket calculators; Automatic calculator; Caculator; Desk calculator; Calculater; Electronic Calculator; Math calculator; Math calculators; Printing Calculator; Handheld calculator; Bowmar Brain; Desktop calculator; Electronic calculator; Digital calculator; Minus button; Minus key; Plus button; Plus key; Equals button; Division button; Equals key; Division key; Multiplication key; Multiplication button; Electronic calculating machine; Desk calculators; Claculator; Fraction to Decimals; 🖩; Cal Tech (calculator); TI Cal Tech; Texas Instruments Cal Tech; Electronic calculators; History of the calculator
υπολογιστής τσέπης

Ορισμός

calculate
v. (L) we calculated that the trip would take two days

Βικιπαίδεια

Mechanical calculator

A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or (historically) a simulation such as an analog computer or a slide rule. Most mechanical calculators were comparable in size to small desktop computers and have been rendered obsolete by the advent of the electronic calculator and the digital computer.

Surviving notes from Wilhelm Schickard in 1623 reveal that he designed and had built the earliest of the modern attempts at mechanizing calculation. His machine was composed of two sets of technologies: first an abacus made of Napier's bones, to simplify multiplications and divisions first described six years earlier in 1617, and for the mechanical part, it had a dialed pedometer to perform additions and subtractions. A study of the surviving notes shows a machine that would have jammed after a few entries on the same dial, and that it could be damaged if a carry had to be propagated over a few digits (like adding 1 to 999). Schickard abandoned his project in 1624 and never mentioned it again until his death 11 years later in 1635.

Two decades after Schickard's supposedly failed attempt, in 1642, Blaise Pascal decisively solved these particular problems with his invention of the mechanical calculator. Co-opted into his father's labour as tax collector in Rouen, Pascal designed the calculator to help in the large amount of tedious arithmetic required; it was called Pascal's Calculator or Pascaline.

In 1672, Gottfried Leibniz started designing an entirely new machine called the Stepped Reckoner. It used a stepped drum, built by and named after him, the Leibniz wheel, was the first two-motion calculator, the first to use cursors (creating a memory of the first operand) and the first to have a movable carriage. Leibniz built two Stepped Reckoners, one in 1694 and one in 1706. The Leibniz wheel was used in many calculating machines for 200 years, and into the 1970s with the Curta hand calculator, until the advent of the electronic calculator in the mid-1970s. Leibniz was also the first to promote the idea of an Pinwheel calculator.

Thomas' arithmometer, the first commercially successful machine, was manufactured two hundred years later in 1851; it was the first mechanical calculator strong enough and reliable enough to be used daily in an office environment. For forty years the arithmometer was the only type of mechanical calculator available for sale until the industrial production of the more successful Odhner Arithmometer in 1890.

The comptometer, introduced in 1887, was the first machine to use a keyboard that consisted of columns of nine keys (from 1 to 9) for each digit. The Dalton adding machine, manufactured in 1902, was the first to have a 10 key keyboard. Electric motors were used on some mechanical calculators from 1901. In 1961, a comptometer type machine, the Anita Mk VII from Sumlock comptometer Ltd., became the first desktop mechanical calculator to receive an all-electronic calculator engine, creating the link in between these two industries and marking the beginning of its decline. The production of mechanical calculators came to a stop in the middle of the 1970s closing an industry that had lasted for 120 years.

Charles Babbage designed two new kinds of mechanical calculators, which were so big that they required the power of a steam engine to operate, and that were too sophisticated to be built in his lifetime. The first one was an automatic mechanical calculator, his difference engine, which could automatically compute and print mathematical tables. In 1855, Georg Scheutz became the first of a handful of designers to succeed at building a smaller and simpler model of his difference engine. The second one was a programmable mechanical calculator, his analytical engine, which Babbage started to design in 1834; "in less than two years he had sketched out many of the salient features of the modern computer. A crucial step was the adoption of a punched card system derived from the Jacquard loom" making it infinitely programmable. In 1937, Howard Aiken convinced IBM to design and build the ASCC/Mark I, the first machine of its kind, based on the architecture of the analytical engine; when the machine was finished some hailed it as "Babbage's dream come true".